1. Maggie spent $\frac{3}{6}$ of an hour on homework and $\frac{1}{6}$ of an hour talking to her friend Julie on the phone. Which of the following can be used to find how much total time Maggie spent on both activities? (11-1)

A Write $\frac{3+1}{6+6}$ to get $\frac{4}{12}$.
Simplify to get $\frac{1}{3}$.
B Write $\frac{3+1}{6}$ to get $\frac{4}{6}$.
Simplify to get $\frac{2}{3}$.
C Write $\frac{3 \times 1}{6}$ to get $\frac{3}{6}$.
Simplify to get $\frac{1}{2}$.
D Write $\frac{3+1}{6+6}$ to get $\frac{4}{12}$.
Simplify to get 3.
2. David raced two snails. The first snail traveled $18 \frac{3}{4}$ inches in one hour and the second snail traveled $16 \frac{1}{2}$ inches in one hour. How much farther did the first snail travel than the second snail? (11-6)

A $1 \frac{3}{4}$ inches
B $2 \frac{1}{4}$ inches
C $2 \frac{1}{2}$ inches
D $3 \frac{1}{4}$ inches
3. What is $3 \frac{1}{9}+1 \frac{5}{9}$ ? $(11-5)$

A $1 \frac{7}{8}$
B $3 \frac{2}{3}$
C $4 \frac{2}{3}$
D $4 \frac{3}{4}$
4. Which of the following pairs of numbers has a least common multiple of 32 ? (11-2)

A 3 and 8
B 4 and 6
C 8 and 16
D 2 and 12
5. Sam practiced guitar $\frac{2}{3}$ hour on Monday and $\frac{1}{4}$ hour on Tuesday. What fraction of an hour did he practice in all? (11-3)

A $\frac{7}{8}$ hour
B $\frac{8}{9}$ hour
C $\frac{10}{11}$ hour
D $\frac{11}{12}$ hour
6. Coach Wilson is buying packages of food for a cookout after the track meet. What is the least number of hamburgers and veggie burgers she will have to buy in order to have the same number of each? (11-2)

| Item | Number in <br> Package |
| :--- | :---: |
| Hamburgers | 20 |
| Veggie burgers | 12 |
| Hot dogs | 10 |

A 40
B 60
C 80
D 120
7. Mr. Lee said that $\frac{3}{14}$ of the art project would involve painting, $\frac{4}{14}$ would involve drawing, and the rest would involve collage. What fraction of the project involves either painting or drawing? (11-1)

A $\frac{1}{4}$
B $\frac{1}{2}$
C $\frac{2}{3}$
D $\frac{3}{4}$
8. Sean and his friend split a meatball sandwich that was 18 inches or $\frac{1}{2}$ of a yard long. Together they ate 9 inches or $\frac{1}{4}$ yard. What part of a yard was left? (11-4)

A $\frac{1}{8}$ yard
B $\frac{1}{6}$ yard
C $\frac{1}{4}$ yard
D $\frac{1}{2}$ yard
9. The table shows how long Mary jogged over a period of days.
If the pattern continues, how long will she jog on the fourth day?

| Day | Time in Hours |
| :---: | :---: |
| 1 | $\frac{3}{12}$ |
| 2 | $\frac{5}{12}$ |
| 3 | $\frac{7}{12}$ |

A $\frac{3}{12}$ hour
B $\frac{6}{12}$ hour
C $\frac{9}{12}$ hour
D $\frac{11}{12}$ hour
10. A piece of orange ribbon is $\frac{11}{12}$ yard long. A piece of yellow ribbon is $\frac{5}{6}$ yard long. How much longer is the piece of orange ribbon than the piece of yellow ribbon? (11-4)

A $\frac{1}{12}$ yard
B $\frac{1}{4}$ yard
C $\frac{1}{2}$ yard
D $\frac{9}{12}$ yard
11. In a bowl of fruit, $\frac{1}{5}$ are apples, $\frac{1}{4}$ are bananas, and the rest are oranges. What fraction of the fruit are either apples or bananas?
(11-3)
A $\frac{1}{9}$
B $\frac{2}{9}$
C $\frac{9}{40}$
D $\frac{9}{20}$
12. The Lopez family went on a 400 -mile trip. On the first day they drove $2 \frac{3}{5}$ hours and on the second day they drove $3 \frac{1}{3}$ hour. How long did they drive during the first two days? (11-5)

A $5 \frac{2}{3}$ hours
B $5 \frac{3}{8}$ hours
C $5 \frac{1}{2}$ hours
D $5 \frac{14}{15}$ hours
13. John needs $4 \frac{2}{3}$ yards of fabric. He already has $3 \frac{1}{3}$ yards. How many yards of fabric does John need? (11-6)

A $1 \frac{1}{3}$ yards
B $2 \frac{1}{3}$ yards
C $2 \frac{3}{4}$ yards
D $3 \frac{1}{2}$ yards
14. Which equals $\frac{8}{9}-\frac{5}{9}$ ? (11-1)

A $\frac{1}{4}$
B $\frac{1}{3}$
C $\frac{4}{9}$
D $\frac{8}{9}$

