- 1. Maggie spent $\frac{3}{6}$ of an hour on homework and $\frac{1}{6}$ of an hour talking to her friend Julie on the phone. Which of the following can be used to find how much total time Maggie spent on both activities? (11-1)
 - A Write $\frac{3+1}{6+6}$ to get $\frac{4}{12}$. Simplify to get $\frac{1}{3}$.
 - **B** Write $\frac{3+1}{6}$ to get $\frac{4}{6}$. Simplify to get $\frac{2}{3}$.
 - **C** Write $\frac{3 \times 1}{6}$ to get $\frac{3}{6}$. Simplify to get $\frac{1}{2}$.
 - **D** Write $\frac{3+1}{6+6}$ to get $\frac{4}{12}$. Simplify to get 3.
- 2. David raced two snails. The first snail traveled $18\frac{3}{4}$ inches in one hour and the second snail traveled $16\frac{1}{2}$ inches in one hour. How much farther did the first snail travel than the second snail? (11-6)
 - **A** $1\frac{3}{4}$ inches
 - **B** $2\frac{1}{4}$ inches
 - C $2\frac{1}{2}$ inches
 - **D** $3\frac{1}{4}$ inches

- 3. What is $3\frac{1}{9} + 1\frac{5}{9}$? (11-5)
 - **A** $1\frac{7}{8}$
 - **B** $3\frac{2}{3}$
 - **C** $4\frac{2}{3}$
 - **D** $4\frac{3}{4}$
- **4.** Which of the following pairs of numbers has a least common multiple of 32? (11-2)
 - **A** 3 and 8
 - **B** 4 and 6
 - **C** 8 and 16
 - **D** 2 and 12
- 5. Sam practiced guitar $\frac{2}{3}$ hour on Monday and $\frac{1}{4}$ hour on Tuesday. What fraction of an hour did he practice in all? (11-3)
 - A $\frac{7}{8}$ hour
 - **B** $\frac{8}{9}$ hour
 - **C** $\frac{10}{11}$ hour
 - **D** $\frac{11}{12}$ hour

Topic **11** Test Form A

6. Coach Wilson is buying packages of food for a cookout after the track meet. What is the least number of hamburgers and veggie burgers she will have to buy in order to have the same number of each? (11-2)

Item	Number in Package
Hamburgers	20
Veggie burgers	12
Hot dogs	10

- **A** 40
- **B** 60
- **C** 80
- **D** 120
- 7. Mr. Lee said that $\frac{3}{14}$ of the art project would involve painting, $\frac{4}{14}$ would involve drawing, and the rest would involve collage. What fraction of the project involves either painting or drawing? (11-1)
 - **A** $\frac{1}{4}$
 - **B** $\frac{1}{2}$
 - **c** $\frac{2}{3}$
 - **D** $\frac{3}{4}$

- 8. Sean and his friend split a meatball sandwich that was 18 inches or $\frac{1}{2}$ of a yard long. Together they ate 9 inches or $\frac{1}{4}$ yard. What part of a yard was left? (11-4)
 - **A** $\frac{1}{8}$ yard
 - **B** $\frac{1}{6}$ yard
 - $\mathbf{C} \quad \frac{1}{4} \text{ yard}$
 - $\mathbf{D} \frac{1}{2}$ yard
- 9. The table shows how long Mary jogged over a period of days. If the pattern continues, how long will she jog on the fourth day?

Day	Time in Hours
1	<u>3</u> 12
2	<u>5</u> 12
3	7/12

- A $\frac{3}{12}$ hour
- **B** $\frac{6}{12}$ hour
- $\mathbf{C} = \frac{9}{12} \text{ hour}$
- **D** $\frac{11}{12}$ hour

- 10. A piece of orange ribbon is $\frac{11}{12}$ yard long. A piece of yellow ribbon is $\frac{5}{6}$ yard long. How much longer is the piece of orange ribbon than the piece of yellow ribbon? (11-4)
 - A $\frac{1}{12}$ yard
 - **B** $\frac{1}{4}$ yard
 - $\mathbf{C} \quad \frac{1}{2} \text{ yard}$
 - $\mathbf{D} = \frac{9}{12}$ yard
- 11. In a bowl of fruit, $\frac{1}{5}$ are apples, $\frac{1}{4}$ are bananas, and the rest are oranges. What fraction of the fruit are either apples or bananas? (11-3)
 - **A** $\frac{1}{9}$
 - **B** $\frac{2}{9}$
 - $c_{\frac{9}{40}}$
 - **D** $\frac{9}{20}$

- 12. The Lopez family went on a 400-mile trip. On the first day they drove $2\frac{3}{5}$ hours and on the second day they drove $3\frac{1}{3}$ hour. How long did they drive during the first two days? (11-5)
 - **A** $5\frac{2}{3}$ hours
 - **B** $5\frac{3}{8}$ hours
 - C $5\frac{1}{2}$ hours
 - **D** $5\frac{14}{15}$ hours
- 13. John needs $4\frac{2}{3}$ yards of fabric. He already has $3\frac{1}{3}$ yards. How many yards of fabric does John need? (11-6)
 - **A** $1\frac{1}{3}$ yards
 - **B** $2\frac{1}{3}$ yards
 - C $2\frac{3}{4}$ yards
 - **D** $3\frac{1}{2}$ yards
- **14.** Which equals $\frac{8}{9} \frac{5}{9}$? (11-1)
 - **A** $\frac{1}{4}$
 - **B** $\frac{1}{3}$
 - **c** $\frac{4}{9}$
 - **D** $\frac{8}{9}$